:боковые стороны аb и cd трапеции аbcd равны соответственно 8 и 10, а меньшее основание bc равно 3. найти площадь трапеции аbcd, если известно, что биссектриса угла cdа делит боковую сторону в отношении 9: 7, считая от большего основания.

Няша200411 Няша200411    3   22.08.2019 14:40    2

Ответы
УмнаяДебилка УмнаяДебилка  05.10.2020 12:46
Тут хитро подобраны значения. Но и при произвольных значениях сторон и заданного отношения принцип решения тот же. Можно пойти разными путями, но смысл один и тот же - надо найти нижнее (большее основание).
Пусть биссектриса угла CDA пересекает AB в точке M.
Тогда AM/BM = 9/7;
BM = AB*7/(9 + 7) = 7/2; AM = 9/2;
Если провести MN II BC, точка N - на CD, то CN/DN = BM/AM = 7/9; и
DN = 90/16; CN = 70/16;
Так как углы NMD и NDM оба равны углу MDA, треугольник NMD равнобедренный, и DN = MN = 90/16;
Дальше можно опять делать по разному, но суть одна. Например, так.
Пусть CE II AB; точка E - на AD; и СЕ пересекает MN в точке K;
тогда KN = MN - BC = 42/16; и DE/KN = DC/CN;
DE = (42/16)*(16/7) = 6;
Вот тут надо остановиться. Решение конкретной этой задачи уже на ладони :) Треугольник CED имеет стороны DE = 6; CE = 8; CD = 10; это египетский треугольник, то есть CE перпендикулярно AD;
Ясно, что площадь трапеции (в данном случае - прямоугольной трапеции) равна 3*8 + 6*8/2 = 48; (или если охота - основания 3 и 6+3 = 9, высота 8, площадь (3 + 9)*8/2 = 48)

Теперь вопрос - а что делать, если бы сложилось не так хорошо, и трапеция не оказалась бы прямоугольной?
Основания её все равно нашлись - все четыре. Если достроить трапецию до треугольника, продлив боковые стороны, то не сложно найти и все стороны этого треугольника, а также площадь подобного ему треугольника, с основанием BC. Площадь трапеции равна разности их площадей, которые находятся по формуле Герона (достаточно искать площадь одного - треугольники подобны, и коэффициент подобия их равен отношению оснований).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия