Боковые ребра правильной треугольной пирамиды составляют с основанием угол в 60 градусов. найдите объем описанного около пирамиды конуса, если сторона основания пирамиды равна а

MaМальчик MaМальчик    2   25.07.2019 00:20    10

Ответы
Slava1432 Slava1432  19.08.2020 16:30
МАВС - правильная пирамида. АВ=ВС=АС=а, <MAO=<MBO=<MCO=60°
МО - высота пирамиды, О -  центр ΔАВС
прямоугольный ΔМОА: 
катет МО=Н, найти
катет АО=(2/3)АК, АК - высота ΔАВС
АК=а√3/2
АО=(а√3/2)*(2/3), АО=а√3/3
<MOA=60°. tg60°=MO:OA. MO=OA*tg60°
MO=(a√3/3)*√3, MO=a
конус описан около правильной пирамиды,=> основание пирамиды - правильный треугольник в писан в окружность, вершина конуса "совпадает" с вершиной пирамиды, т.е высота пирамиды=высоте конуса. Н=а, R=AO, R=a√3/3
V= \frac{1}{3}*S*H
V= \frac{1}{3} * \pi *( \frac{a \sqrt{3} }{3} ) ^{2} *a
V= \frac{a ^{3} * \pi }{9}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия