Боковое ребро правильной треугольной пирамиды равно 4 а сторона основания пирамиды равна 6 найдите высоту пирамиды

Inna21032002 Inna21032002    3   18.07.2019 21:30    20

Ответы
AnastasiaPonomarenko AnastasiaPonomarenko  03.10.2020 07:21
Высота правильной треугольной пирамида проектируется в центр треугольника. центр правильного треугольника - центр вписанной и описанной окружностей, а так же точка пересечения медиан, биссектрис высот, которые в точке пересечения делятся в отношении 2:1 считая от вершины.
высота правильного треугольника вычисляется по формуле: h=a√3/2
h=6√3/2. h=3√3
(2/3)*h=2√3
прямоугольный треугольник: катет высота пирамиды Н(найти), катет (2/3)h, гипотенуза - боковое ребро правильной пирамиды.
по теореме Пифагора:
4²=Н²+(2√3)², H²=16-12, H=2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия