Биссектрисы внутреннего и внешнего углов при вершине ступоугольного треугольника авс пересекают прямую ав в точках l и m соответственно. найдите радиус окружности, описанной около треугольника авс, если сl = см, вс = 5, ас = 12.

lera784738374 lera784738374    2   26.08.2019 12:00    1

Ответы
Alisher42Life Alisher42Life  05.10.2020 20:54
Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано).
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.

Биссектрисы внутреннего и внешнего углов при вершине ступоугольного треугольника авс пересекают прям
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия