Биссектрисы двух углов прямоугольного треугольника при пересечении образуют угол 79 градусов. найти меньший острый угол треугольника

said97 said97    2   30.06.2019 11:30    0

Ответы
gonigh gonigh  24.07.2020 01:59
Т. к. не указано биссектрисы каких углов, то надо рассмотреть 2 случая: а) берем биссектрисы 2х острых углов, обозначим величину каждого острого угла как 2х и 2у. сумма острых углов прямоугольного тр. 90*, поэтому сумма половинок - 45* ( х + у = 45* ). Рассмотрим тр ОАВ ( О - пересечение биссектрис) : < AOB 180* - 79* = 101*, т. е. на 2 других приходиться 180* - 101 = 79*. а по условию - 45* . Получили противоречие. б) Берем биссектрисы прямого угла и одного из острых. Рассмотрим тр. АСО ( С - вершина прямого угла) : сумма углов х + 45* +101* = 180*, х = 34* = > 2x = 68* = > 2e = 90* - 68* = 22
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия