Биссектриса угла d параллелограмма abcd пересекает продолжение стороны ab в точке f. окружность, вписанная в треугольник adf , касается стороны ad в точке e , а отрезка ab в точке k.
а) найти радиус окружности, если ad=9, ke=4 и ae меньше еd.
б) при дополнительном условии, что окружность касается стороны bc параллелограмма, найти площадь параллелограмма.

tukacheva88 tukacheva88    2   11.11.2019 14:22    1

Ответы
choika64 choika64  10.10.2020 12:26

ответ: а) 6/√5 (ед. длины). б) 108/√5=21,6√5 (ед. площади)

Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных,  проведенных к окружности из одной точки.  АК=АЕ; DE=DH; FK=FH

 Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.

а) Рассмотрим рисунок приложения.  Угол AFD=∠CDF (накрестлежащие при FA||CD и  секущей FD)  Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.

  АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х

  Аналогично в ∆ КАЕ  биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.

     Прямоугольные ⊿ МАЕ и ⊿ НAD  подобны по общему острому углу при А.  Из подобия следует отношение DH:ЕМ=DA:ЕА.

т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0.  По т.Виета х₁+х₂=-(-9)=9;    х₁•х₂=18 ⇒ х₁=3; х₂=6

  По условию АЕ< AD, поэтому АЕ=3, ED=6

Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5

 ⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.

б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)


Биссектриса угла d параллелограмма abcd пересекает продолжение стороны ab в точке f. окружность, впи
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия