B9 цилиндр и конус имеют общее основание и высоту.угол между высотой и образующей конуса равен 30°.площадь боковой поверхности цилиндра равна 18 √ 3. найдите площадь полной поверхности конуса.

foxmanlp foxmanlp    1   02.07.2019 00:40    1

Ответы
danyakarpik danyakarpik  26.07.2020 10:04
Цилиндр и конус имеют общее основание и высоту⇒конус вписан в цилиндр.
осевое сечение- равнобедренный треугольник в писан в прямоугольник. основание треугольника =стороне прямоугольника.
высота треугольника делит его на 2 равных прямоугольных треугольника.
катет H- высота треугольника
катет R- (1/2) основания треугольника=радиусу основания конуса и цилиндра
гипотенуза L- образующая конуса
<α - угол между гипотенузой и высотой Н, =30°
R=(1/2)L, ⇒L=2R
по теореме Пифагора: (2R)²=H²+R², H²=3R²
H=R√3
Sбок.пов.цилиндра=2πRH
18√3=2π*R*R√3, R²=9/π
R=3/√π
L=2*(3/√π),  L=6/√π
Sполн. пов. конуса=Sбок+Sосн
Sп.п.конуса=πRL+πR²
S=π(3/√π)*6/√π+π*(3/√π)²
Sполн.пов.конуса=27
 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия