Abc равностороннего треугольника ac, ab mc/ma=na/nb=2 взяты точки m,n. bm и cn пересекаются в точке p. докажите apc=90 градус

гпү гпү    2   01.07.2019 21:00    1

Ответы
hunateВадим2827854 hunateВадим2827854  02.10.2020 17:52
На координатной плоскости взят треугольник с вершинами
A(0, 0) B(3√3/2, 3/2) C(3, 0) это равносторонний треугольник со стороной 3.
Точки M(1, 0) N(√3, 1); удовлетворяют условию.
Прямая BM имеет уравнение y = 3√3(x - 1)
(Я не буду объяснять, как составить уравнение прямой, проходящей через две заданные точки. Поскольку через две точки можно провести только одну прямую, достаточно проверить, что уравнению удовлетворяют обе точки, в данном случае y = 0 при x = 1 и y = 3√3/2 при x = 3/2;)
Прямая CN имеет уравнение y = (√3/2)(3 - x); (при x = 1 y = √3)
Точка пересечения этих прямых P(p,q) находится так
√3(3 - p)/2 = 3√3(p - 1); p = 9/7; q = 6√3/7; q/p = 2/√3;
Поскольку тангенсы угла наклона прямых AP 2/√3 и CN -√3/2 при умножении друг на друга дают -1, прямые эти взаимно перпендикулярны.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия