А) медіана прямокутного трикутника, проведена до гіпотенузи, дорівнює 13 см. знайдіть катети,якщо периметр трикутника дорівнює 60 см. б) з вершини прямого кута прямокутного трикутника до гіпотенузи проведено медіану та висоту, довжини яких відповидно дорівнюють 25 та 24 см. обчисліть периметр трикутника.

Капитошка1985 Капитошка1985    2   09.06.2019 13:30    24

Ответы
Mariaa77 Mariaa77  08.07.2020 09:57
1)Дан прямоугольный треугольник АВС: угол С-прямой. Медиана прямоугольного треугольника равна радиусу описанной окружности, а гипотенуза - диаметр этой окружности. Поэтому гипотенуза АВ=26 см.
АВ+ВС+АС=60, тогда АВ+ВС=60-26=34.
Пусть АВ=х, тогда ВС=34-х
По теореме Пифагора  х²+(34-х)²=26²
х²-34х+240=0,
D=b²-4ac=(-34)²-4·240=196=14²
x₁=(34+14)/2      х₂=(34-14)/2
х₁=24                 х₂=10
Тогда другой катет соответственно 34-24=10 или 34-10=24

2) Пусть дан прямоугольный треугольник АВС, С- прямой угол. СЕ- медана, СЕ=25.
СК-высота, СК=24.
Гипотенуза прямоугольного треугольника-диаметр описанной окружности. Радиус описанной окружности равен медиане.
АВ=50.
Из прямоугольного треугольника СКЕ: КЕ²=СЕ²-СК²=25²-24²=49=7²
КЕ=7,
КА=7+25=32, тогда АС²=24²+32²=1600=40²
АС=40
ВК=50-32=18
ВС²=ВК²+СК²=18²+24²=900=30²
ВС=30
ответ АС=40, ВС=30, АВ=50. Р=120 см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия