50 ! даны вершины треугольника a=(5; -2; 0), b=(-1; -2; 4), c=(3; -2; 1). найти его внутренний угол при вершине b.

Dimka3113 Dimka3113    1   20.09.2019 07:10    0

Ответы
lkQwertyuiop1 lkQwertyuiop1  08.10.2020 04:05
АВ = √((-1-5)²+(-2+2)²+(4-0)²) = √(36+16) = √52 
ВС = √((3+1)²+(-2+2)²+(1-4)²) = √(16+9) = √25 
АС = √((3-5)²+(-2+2)²+(1-0)²) = √(4+1) = √5 
т.косинусов для стороны АС (против угла В): 
5 = 52+25 - 2*√(52*25)*cosB 
cosB = 72 / (20√13) = 3.6 / √13 ≈≈ 0.99846 
∡B ≈≈ 3°
ПОКАЗАТЬ ОТВЕТЫ
Anna2004Shevtsova Anna2004Shevtsova  08.10.2020 04:05
A=(5;-2;0), B=(-1;-2;4), C=(3;-2;1). Найти его внутренний угол при вершине B, То есть найти угол между векторами ВА и ВС.

|BА| = √((Xa-Xb)²+(Ya-Yb)²+(Za-Zb)²) = √(6²+0²+(-4)²) = √52.
|BC| = √((Xc-Xb)²+(Yc-Yb)²+(Zc-Zb)²) = √(4²+0²+(-3)²) = 5.
cos(BA^BC)=(Xba*Xbc+Yba*Ybc+Zba*Zbc)/[√(Xba²+Yba²+Zba²)*√(Xbc²+Ybc²+Zbc²)].
В нашем случае:
CosB=(24+0+12)/(5√52)  ≈ 36/36,055513 ≈ 0,99846.
<B=arccos(0,99846) ≈3,2°.

50 ! даны вершины треугольника a=(5; -2; 0), b=(-1; -2; 4), c=(3; -2; 1). найти его внутренний угол
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия