5 вариант 1) В прямоугольном треугольнике ABC <C = 90°, <B = 30 °,
BC = 6√3 Найти AB, AC и площадь треугольника ABC.
2) В прямоугольной трапеции АВСД меньшее основание 8 см, большая боковая
сторона равна 52см. , острый угол трапеции равен 45
Найти большее
основание и площадь трапеции.
Для начала найдём неизвестные элементы треугольника АВС. Если угол В=30 градусов, то угол А=60 градусов. Если АС=2, то АВ=2*2=4, потому что катет АС лежит против угла в 30 градусов. По теореме Пифагора найдём ВС, ВС=. Теперь отметим точки Е и F. АЕ=ЕВ=2, CF=FB=. Вектор EF = вектор ЕВ + вектор BF.
Ну а теперь давайте искать произведения векторов.
1) вектор ВА * вектор ВС = |ВА|*|ВС|*cosB=
2) вектор ВА * вектор АС = |ВА|*|АС|*cos(180-А)=
Мы взяли косинус угла 180-А, потому что нам нужно было, чтобы векторы выходили из одной точки. Мы сделали параллельный перенос, и именно так и получилось.
3) вектор EF* вектор ВС= (вектор ЕВ + вектор BF)*вектор ВС=вектор ЕВ*вектор ВС + вектор BF* вектор ВС = |EB|*|BC|*cos(180-B)+|BF|*|BC|*cos0=
Объяснение: