45 за через точку с окружности с центром о провели касательную к этой окружности, ab - диаметр окружности. из точки а на касательную опущен перпендикуляр ad. докажите, что луч ac - биссектриса угла bad.
По условию АД перпендикулярна СД, также ОС перпендикулярна СД (касательная к окружности перпендикулярна к радиусу, проведенному в точку касания). Значит АД||ОС (если две прямые перпендикулярны третьей прямой, то они параллельны между собой). АС является секущей к прямым АД и ОС, значит углы ДАС и АСО равны как внутренние накрест лежащие. Δ АОС является равнобедренным, т.к. ОА=ОС (радиусы), значит углы при основании ОАС и АСО равны. Получается , что углы ДАС и ОСА равны, значит АС - биссектриса угла ВАД
АС является секущей к прямым АД и ОС, значит углы ДАС и АСО равны как внутренние накрест лежащие.
Δ АОС является равнобедренным, т.к. ОА=ОС (радиусы), значит углы при основании ОАС и АСО равны.
Получается , что углы ДАС и ОСА равны, значит АС - биссектриса угла ВАД