Построим высоту правильного треугольника BH, в который вписана окружность
AH = AC/2 (высота в правильном треугольнике является его медианой, т. е. делит сторону на две равные части)
Рассмотрим ΔABH - прямоугольный
AH = AC/2 = AB/2 (в правильном треугольнике все стороны равны)
По теореме Пифагора выразим катет BH
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне
Найдем радиус описанной окружности около правильного треугольника, чтобы далее найти радиус вписанной. Для этого используем формулу:
a₃ = R√3, где a₃ - сторона правильного треугольника, R - радиус описанной окружности
Подставляем
12 = R√3
Найдем радиус вписанной окружности, используя формулу
где r - радиус вписанной окружности в правильный n-угольник, R - радиус описанной окружности около правильного n-угольника, n - число углов правильного треугольника (у нас правильный треугольник)
Подставляем
Радиус окружности, вписанной в правильный треугольник, является радиусом описанной окружности около правильного шестиугольника (R₂)
Формула для стороны правильного шестиугольника через радиус описанной около него окружности:
a₆ = R, где a₆ - сторона правильного шестиугольника, R - радиус описанной около него окружности
Подставив, получаем
a₆ = 2√3 дм
Найдем периметр правильного шестиугольника:
P = 2√3 * 6 = 12√3 дм
Найдем радиус вписанной окружности в правильный шестиугольник по той же формуле через радиус описанной окружности
Существует формула для нахождения площади правильного n-угольника:
где S - его площадь, P - его периметр, r - радиус вписанной в него окружности
Более компактное решение.
для этого воспользуемся парой формул
S правильного треугольника= 3√3*r²
где r- радиус вписаной окружности
Из формулы найдем радиус
3√3*r²=36√3
r²=12
Теперь Зная, что сторона Вписанного в окружность Правильного шестиугольника равна радиусу данной окружности, вспомним еще одну формулу
S правильного шестиугольника = (3√3*a²)/2 , где a²=r²
Найдем площадь шестиугольника
S=(3√3*12)/2=3*6*√3=18√3
Построим высоту правильного треугольника BH, в который вписана окружность
AH = AC/2 (высота в правильном треугольнике является его медианой, т. е. делит сторону на две равные части)
Рассмотрим ΔABH - прямоугольный
AH = AC/2 = AB/2 (в правильном треугольнике все стороны равны)
По теореме Пифагора выразим катет BH
Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне
Найдем радиус описанной окружности около правильного треугольника, чтобы далее найти радиус вписанной. Для этого используем формулу:
a₃ = R√3, где a₃ - сторона правильного треугольника, R - радиус описанной окружности
Подставляем
12 = R√3
Найдем радиус вписанной окружности, используя формулу
где r - радиус вписанной окружности в правильный n-угольник, R - радиус описанной окружности около правильного n-угольника, n - число углов правильного треугольника (у нас правильный треугольник)
Подставляем
Радиус окружности, вписанной в правильный треугольник, является радиусом описанной окружности около правильного шестиугольника (R₂)
Формула для стороны правильного шестиугольника через радиус описанной около него окружности:
a₆ = R, где a₆ - сторона правильного шестиугольника, R - радиус описанной около него окружности
Подставив, получаем
a₆ = 2√3 дм
Найдем периметр правильного шестиугольника:
P = 2√3 * 6 = 12√3 дм
Найдем радиус вписанной окружности в правильный шестиугольник по той же формуле через радиус описанной окружности
Существует формула для нахождения площади правильного n-угольника:
где S - его площадь, P - его периметр, r - радиус вписанной в него окружности
Подставляем
ответ: S = 18√3 дм²