3. В треугольнике АВС (рисунок) на стороне AC взята точка K, BK =
= KC = AK, угол AKB на 30° больше угла С. Найдите
угол ABK.​

medi8 medi8    1   29.04.2020 18:56    54

Ответы
GloomyCat231 GloomyCat231  14.10.2020 03:29

Объяснение:

По условию АК=СК=ВК ⇒  Отрезок ВК - медиана АВС и равна АС:2. Поэтому треугольники АВК и СВК - равнобедренные, углы при АС и при ВС равны.  Примем ∠КСВ=∠СВК=а. Тогда внешний угол при вершине К треугольника СВК угол АКВ=2а=а+60°, поэтому ∠КВС=∠СВК=60°, а ∠АКВ=120°. В равнобедренном ∆ АКВ ∠ВАК=∠АВК=(180°-120°):2=30°

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия