3. Даны два равнобедренных треугольника. Их основание и одна боковая сторона равны.
Докажите, что эти треугольники равны.
4. Задан равнобедренный треугольник,
периметр которого 18 см. Рассчитайте стороны
треугольника, если его основание на 3 см
больше чем длина боковой стороны.​

yiliamasegorova yiliamasegorova    3   12.12.2020 03:56    100

Ответы
IvanBur2006 IvanBur2006  10.01.2024 19:30
Добрый день! Давайте рассмотрим ваши вопросы по очереди.

3. Для доказательства равенства двух равнобедренных треугольников нам необходимо использовать определение равнобедренного треугольника.

Определение равнобедренного треугольника гласит, что треугольник является равнобедренным, если у него две стороны равны между собой.

В данной задаче у нас есть два треугольника, основание и одна боковая сторона которых равны. Это означает, что у этих треугольников у нас уже есть две равные стороны.

Теперь нам нужно доказать, что их третья сторона также равна между собой. Для этого мы можем использовать свойство равенства углов у равнобедренных треугольников.

Так как одна из боковых сторон равна, то и два угла при ее основании равны между собой. А так как у нас равнобедренный треугольник, то и у второго треугольника соответствующие углы при его основании также равны.

Другими словами, у нас получается, что у треугольников у нас равны все три стороны и два угла при их основании. Следовательно, эти треугольники равны.

4. Для решения задачи на нахождение сторон равнобедренного треугольника, нам необходимо использовать информацию о периметре и отношении длин основания и боковой стороны.

Пусть х будет длина боковой стороны треугольника, тогда основание будет равно (x + 3).

Периметр равнобедренного треугольника составляет сумму длин всех его сторон. В данной задаче периметр равен 18 см, а это значит, что сумма всех сторон равна 18 см.

Общая формула для нахождения периметра равнобедренного треугольника известна и выглядит следующим образом:

периметр = длина основания + 2 * длина боковой стороны.

Мы можем записать данное уравнение для нашего треугольника следующим образом:

18 = (x + 3) + 2x

Решая это уравнение, получаем:

18 = x + 3 + 2x

18 = 3x + 3

Вычитаем 3 с обеих сторон:

15 = 3x

Теперь делим обе части на 3:

5 = x

Таким образом, мы нашли значение стороны боковой стороны треугольника - 5 см.

Для нахождения длины основания добавим к 5 длину основания (3):

5 + 3 = 8

Следовательно, стороны данного равнобедренного треугольника равны: 5 см, 5 см и 8 см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия