20б в равнобедренном треугольнике две медианы равны 8 и 10 см. может ли его боковая сторона быть равной 12 см? ответ объясните

arsenal2108 arsenal2108    1   12.09.2019 12:30    2

Ответы
Ясминка2006 Ясминка2006  07.10.2020 09:38
Медианы точкой пересечения делятся в отношении 2 к 1 начиная от угла, из которого они построены
Если длина вертикальной медианы А, наклонной B
Рассмотрим прямоугольный треугольник, образованный частями медиан и половиной основания
Обозначим половину основания как x
По Пифагору
x² = (2/3B)² - (1/3A)² = 1/9(4B² - A²)
x = 1/3√(4B² - A²)
Длина боковой стороны 
l² = x²+A² = 1/9(4B² - A²)+A² = 4/9(B² + 2A²)
l = 2/3√(B² + 2A²)
а теперь к нашим числам.
1) А=8 см, B=10 см
x = 1/3√(4B² - A²) = 1/3√(4*100 - 64) = 4√(7/3) см
l = 2/3√(B² + 2A²) = 2/3√(100 + 2*64) = 4√(19/3) см
С требуемыми 12-ю см не совпадает
2) А=10 см, B=8 см
x = 1/3√(4B² - A²) = 1/3√(4*64 - 100) = 2√(13/3) см
l = 2/3√(B² + 2A²) = 2/3√(64 + 2*100) = 4√(22/3) см
Снова не 12!
ответ
При данных длинах медиан боковая сторона 12 равняться не может

20б в равнобедренном треугольнике две медианы равны 8 и 10 см. может ли его боковая сторона быть рав
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия