2. сторона основания правильной четырехугольной пирамиды равна 4 см , а апофема образует с плоскостью основания угол в 60 °. найдите площадь полной поверхности пирамиды .

9573st 9573st    2   28.02.2019 09:20    19

Ответы
илья1862 илья1862  23.05.2020 16:47

Sполн=Sосн+Sбок

Sосн=4^2=16(см2)

Sбок=4*S(треуг)=4*1/2*4*l=8l,где l-апофема пирамиды

l=4/(2cos60)=4/(2*1/2)=4 (см)

Sбок=8*4=32(см2)

Sполн=16+32=48(см2)

ПОКАЗАТЬ ОТВЕТЫ
хотам3 хотам3  23.05.2020 16:47

SABCD - прав. пирамида. ABCD - квадрат. О -т. перес. диагон. SO - высота пирамиды. Проведем SK перпенд AD. SK - апофема. Угол SKO = 60 гр.

КО = CD/2 = 2 см. Из тр-ка SKO:

SK = KO/cos 60 = 4 см. 

Sполн = Sосн + 4Sграни = 4^2 + 4*(0,5*4*4) = 16 + 32 = 48 см^2

ответ: 48 см^2.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия