1704. в треугол. авс ав=вс=ас=54√3. найдите высоту вн 1706 в треугол. авс ав=вс-ас=46√3. найдите высоту сн 1711 в треугол. авс ас=вс=54,угол с=30 гр.найдите высоту ан
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=27√3. Основание AC. Далее рассмотрим треугольник ABH - прямоугольный. По теореме Пифагора находим BH:
BH=81
1706.
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=23√3. Основание AB. Далее рассмотрим треугольник ACH - прямоугольный. По теореме Пифагора находим CH:
CH=69
1711.
Так как треугольник ABC - равнобедренный, то угол B и угол C равны по 30 градусов. Рассмотрим один из двух треугольников ABH - прямоугольный. По свойству мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует, что:
1704.
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=27√3. Основание AC. Далее рассмотрим треугольник ABH - прямоугольный. По теореме Пифагора находим BH:
BH=81
1706.
Так как треугольник ABC - равносторонний и равнобедренный, то высота в нем является медианой и биссектрисой, значит AH=23√3. Основание AB. Далее рассмотрим треугольник ACH - прямоугольный. По теореме Пифагора находим CH:
CH=69
1711.
Так как треугольник ABC - равнобедренный, то угол B и угол C равны по 30 градусов.
Рассмотрим один из двух треугольников ABH - прямоугольный.
По свойству мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует, что:
AH=27