14. В треугольнике ABC проведена медиана ВВ1. Докажите, что ВВ1 < (АВ + BC)/2

ezof2 ezof2    1   29.08.2021 21:53    0

Ответы
alenamorozova4 alenamorozova4  29.08.2021 22:00

Объяснение:

Проведем СД параллельно АВ и той же длины и продлим ВВ1 на такое же расстояние. АВСД - параллелограмм (противоположные стороны параллельны и равны), ВД - его диагональ. Согласно правилу треугольника  ВД < ВС + СД = АВ + ВС и соответственно. ВВ1 = ВД / 2 < (AB + BC) / 2

Достроив тр-к до параллелограмма, где ВВ1 - половина диагонали, убедимся что сумма смежных сторон параллелограмма больше диагонали, равной удвоенной медиане, так как ломаная всегда больше прямой:АВ + ВС >2BB1(AB+BC)/2 >BB1 что и требовалось доказать.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия