10 прямой треугольной призме abca1b1c1, угол acb=90 градусов, угол bac=60 градусов, ас=а. прямая b1c составляет с плоскостью грани аа1с1с угол 45 градусов. найдите площадь боковой поверхности призмы."

nadezhstepan20 nadezhstepan20    1   28.06.2019 12:30    8

Ответы
vinerxasanzyan vinerxasanzyan  22.07.2020 18:28

Угол АСВ=90° (дано). Призма прямая ⇒ все ее  боковые грани  - прямоугольники. Катет АС  треугольника АВС прилежит углу 60°, ⇒ гипотенуза АВ=АС:cos60°=a:0,5=2a. Катет ВС=АВ•sin60°=2a•√3/2=a√3. В1С1 перпендикулярен  плоскости АА1С1С, следовательно, перпендикулярен А1С1, а СС1 – проекция наклонной В1С. По условию ∠В1СС1=45°. Значит, В1С – биссектриса прямого угла, угол С1В1С=45°, и ∆ В1С1С - равнобедренный, поэтому высота призмы СС1=В1С1=ВС=а√3 Формула площади боковой поверхности призмы Ѕ=Р•Н (произведение периметра основания и высоты призмы). S=(а+2а+а√3)•a√3=a²•(3+√3)


10 прямой треугольной призме abca1b1c1, угол acb=90 градусов, угол bac=60 градусов, ас=а. прямая b1c
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия