1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на отрезки длиной 18 и 16 см, считая от вершина. найдите радиус вписанной окружности и площадь треугольника 2.прямоугольный треугольник вписан в окружность. найдите радиус этой окружности, если катет треугольника равен 6дм, а синус прилежащего угла равен 0.8 3.докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

nastyaozernova nastyaozernova    2   24.09.2019 23:01    1

Ответы
Оля2204202 Оля2204202  04.08.2020 15:33
)

Задача №3
См. рис. 3. BC || AD, AB и CD — бёдра трапеции. Докажем, что AB=CD.

Если вокруг четырёхугольника можно описать окружность, то сумма противоположных углов равна 180° (необходимое условие). То есть ∠A+∠C=∠B+∠D=180°.

С другой стороны, сумма углов, прилежащих к боковым сторонам трапеции, равна 180° (по теореме о параллельных прямых BC и AD и секущей AB). Следовательно, ∠A+∠B=∠C+∠D=180°.

Сопоставив эти равенства, получим, что ∠A=∠D и ∠B=∠C. Является ли это доказательством, что трапеция равнобедренная? Я не помню, изучают ли в школе эту теорему, поэтому на всякий случай докажу.

Проведём высоты BE и CF (см. рис. 4). Они равны, так как все высоты трапеции равны. Поэтому прямоугольные треугольники ABE и DFC равны (по острому углу и катету). Значит, равны их гипотенузы — AB и CD, что и требовалось доказать.

1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
1.в равнобедренном треугольнике вписана окружность, которая точкой касания делит боковую сторону на
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия