1)в правильный треугольный пирамиде сторона основания 6 см,а высота равна 10 см. определить полную поверхность пирамиды. 2)апофема пирамиды прав. треугольной равна 5 см,а высота равна 4 см. найти s(бок) пирамиды.
Так как по условию ПРАВИЛЬНЫАЯ треугольная пирамида, то в основании лежит правильный треугольник. - площадь основания
Найдем площадь боковой поверхности. Так как сторона основания есть, то радиус вписанной окружности r=a/2√3=6/2√3 = √3 см С прямоугольного треугольника апофема равна см
Площадь боковой поверхности:
Sп=
ответ:
Вторая задачка
С прямоугольного треугольника радиус вписанной окружности(основания)
По определению радиусу вписанной окружности правильного треугольника сторона основания равна
- площадь основания
Найдем площадь боковой поверхности.
Так как сторона основания есть, то радиус вписанной окружности
r=a/2√3=6/2√3 = √3 см
С прямоугольного треугольника апофема равна
см
Площадь боковой поверхности:
Sп=
ответ:
Вторая задачка
С прямоугольного треугольника радиус вписанной окружности(основания)
По определению радиусу вписанной окружности правильного треугольника
сторона основания равна
ответ: