Объяснение:
Дано:
ABCD- ромб
АВ=20см
ВD=32см
АС=?
Решение
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ВО=ВD:2=32:2=16см.
∆АОВ- прямоугольный треугольник.
По теореме Пифагора
АО=√(АВ²-ВО²)=√(20²-16²)=√(400-256)=
=√144=12см.
АС=2*АО=2*12=24см.
ответ: АС=24см.
2)
Окружность
О-центр окружности
АВ=8см хорда
ОА=ОВ=R=5см
ОК=?
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ.
ВК=КА
ВК=АВ:2=8:2=4см.
Теорема Пифагора
ОК=√(ОВ²-КВ²)=√(5²-4²)=√(25-16)=3см
ответ: 3см
Объяснение:
Дано:
ABCD- ромб
АВ=20см
ВD=32см
АС=?
Решение
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ВО=ВD:2=32:2=16см.
∆АОВ- прямоугольный треугольник.
По теореме Пифагора
АО=√(АВ²-ВО²)=√(20²-16²)=√(400-256)=
=√144=12см.
АС=2*АО=2*12=24см.
ответ: АС=24см.
2)
Дано:
Окружность
О-центр окружности
АВ=8см хорда
ОА=ОВ=R=5см
ОК=?
Решение
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ.
ВК=КА
ВК=АВ:2=8:2=4см.
Теорема Пифагора
ОК=√(ОВ²-КВ²)=√(5²-4²)=√(25-16)=3см
ответ: 3см