1)радиус окружности описанный около квадрата,равен 8 .найти диагональ квадрата . 2)сторона квадрата равна 18 см.найти радиус вписанной окружности.

Полинаhelpme1 Полинаhelpme1    1   12.07.2019 08:50    1

Ответы
magic0000 magic0000  06.08.2020 23:47
1) В данном случае диагональ квадрата - это и есть диаметр описанной окружности и равен двум радиусам:
d=2r=2\cdot8=16

2) В этом случае, наоборот, сторона квадрата - это диаметр вписанной окружности, а радиус равен половине диаметра (или стороны):
r= \frac{d}{2}=\frac{a}{2}=\frac{18}{2}=9 см

3) Смотрим третий рисунок:
ABCD - прямоугольник, АВ=15, О - точка пересечения диагоналей, ∠АОВ=60°
Известно, что диагонали  прямоугольника равны и точкой пересечения делятся пополам, значит АО=ОВ, то есть ΔАОВ - равнобедренный. Но если угол при вершине равен 60°, то и углы при основании равны: \frac{(180-60)}{2}= \frac{120}{2}=60^0
Значит  ΔАОВ - равносторонний, АО=ОВ=ВС=15 см.
Радиус описанной окружности в данном случае равен половине диагонали, то есть АО или ОВ:
r=AO=OB=BC=15 см
1)радиус окружности описанный около квадрата,равен 8 .найти диагональ квадрата . 2)сторона квадрата
1)радиус окружности описанный около квадрата,равен 8 .найти диагональ квадрата . 2)сторона квадрата
1)радиус окружности описанный около квадрата,равен 8 .найти диагональ квадрата . 2)сторона квадрата
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия