1. Периметр прямоугольника равен 16 см. Чему равны стороны прямоугольника, если известно, что одна его сторона в 3 раза больше другой? 2. В ромбе АВСD О – точка пересечения диагоналей, угол А равен 1400 . Определите углы ∆ AOD.
3. В прямоугольнике АВСD проведена биссектриса угла А, которая пересекает сторону ВС в точке Е, так что ВЕ=4см, ЕС=5 см. Найдите периметр прямоугольника.
4. Меньшая диагональ ромба равна 24 см, один из углов равен 600, найдите сторону ромба
5. Периметр квадрата равен 46 см., найдите его площадь.
1. 2см, 6 см.
2. 20°, 70°, 90°.
3. 26 см.
4. 24 см.
5. 132,25 см².
Объяснение:
1. Пусть меньшая сторона прямоугольника (a) равна х см. Тогда большая сторона (b) равна 3х см.
Периметр Р=2(a+b);
2(x+3x)=16;
4x=8;
x=2 см - меньшая сторона;
3х=3*2=6см - большая сторона.
Проверим:
Р=2(2+6)=2*8=16 см. Все верно.
***
2. В ромбе диагонали пересекаются под прямым углом. Следовательно ∠AOD=90°;
Угол А диагональю АС делится пополам (∠ВАО=∠DAO=140/2=70°;
∠ADO =180°-(∠AOD+DAO)=180°-(90°+70°)=180°-160°=20°.
***
3. Проведем перпендикуляр EN⊥AD. Получим два треугольника: ΔABE = ΔANE (по двум углам и общей стороне).
Значит AB=4 см ВС=AD=5+4=9 см.
Р=2(a+b), где a и и - стороны прямоугольника.
Р=2(4+9)=2*13=26 см.
***
4. Меньшая диагональ ромба делит его на два равных равносторонних треугольника (углы равны по 60°).
Значит стороны ромба равны его меньшей диагонали 24 см.
***
5. Периметр квадрата Р=4а, где а - сторона квадрата.
а=Р/4=46/4=11,5 см.
Площадь квадрата S= a²=11,5²=132,25 см².