№1 основание равнобедренной трапеции равны 12 и 30. синус одного из углов трапеции равен 0,8. найдите боковую сторону трапеции. №2 хорда ав делит окружность на две дуги, градусные величины которых относятся как 3: 7. под каким углом видна эта хорда из точки с, принадлежащей меньшей дуге окружности? ответ дайте в градусах. №3 точки а, в, с, расположены на окружности, делят её на три дуги, градусные величины которых относятся как 3: 10: 11. найдите градусную меру меньшего из углов треугольника авс. №4 в окружность радиуса 29 вписана трапеция, основания которой равны 40 и 42, причём центр окружности лежит вне трапеции. найдите высоту этой трапеции.
1
a=12 b=30
боковая сторона -с
с = (b-a) / (2sin<) = (30-12) / (2*0.8) =11.25
2
дуга/полная окружность 360 град
две дуги, градусные величины которых относятся как 3:7.<это 3+7=10 частей
дуга 3 3/10*360=108 <меньшая дуга
дуга 7 7/10*360=252
Под каким углом видна хорда из точки С, принадлежащей меньшей дуге окружности?
значит угол обзора<C опирается на большую дугу 252 град
<C -вписанный равен половине дуги 252/2=126 град
3
дуга/полная окружность 360 град
три дуги, градусные величины которых относятся как 3:10:11.<это 24 части
дуга 3 3/24*360=45 <меньшая дуга <напротив вписанный угол <C
<C -вписанный равен половине дуги 45/2=22,5 град = 22 град 30 мин
4
основания a= 40 b = 42
В окружность радиуса 29 вписана трапеция , значит равнобедренная
центр окружности лежит вне трапеции. - пусть точка О
образуется два равнобедренных треугольника с вершиной в т.О и основаниями a , b
боковые стороны в треугольниках -радиусы R=29
по теореме Пифагора
высота треугольника 1
h1^2 = R^2- (a/2)^2 ; h1 = √ (R^2- (a/2)^2 )
высота треугольника 2
h2^2 = R^2- (b/2)^2 ; h1 = √ (R^2- (b/2)^2 )
значит высота трапеции
H = h1 - h2 = √ (R^2- (a/2)^2 ) - √ (R^2- (b/2)^2 ) <подставим числа
H = √ (29^2- (40/2)^2 ) - √ (29^2- (42/2)^2 ) = 1