1. найти угол между прямой ad1 и прямой dc1 куба abcda1b1c1d1. 2. дан тетраэдр abcd, в котором ac=bd, а угол между скрещивающимися прямыми ac и bd равен α. m и n - середины ребер bc и ad. найти угол между прямыми mn и ac. 3. найти угол между диагональю основания правильной четырёхугольной пирамиды sabcd и не пересекающим её боковым ребром(решите , используя несколько методов).

AMK525 AMK525    2   21.03.2019 00:20    2

Ответы
Sasha200593 Sasha200593  26.05.2020 11:16

Искомый угол равен углу С1ВМ (заменили прямую АД1 на пар-ную ей ВС1.
1)Рассмотрим тр-к С1ВМ.Найдём косинус искомого угла (а) по т.косинусов.Но сначала найдём:
2)ВМ из прямоуг. тр-ка ВМД:ВМ²=BD²+MD²;BM²=(aV2)²+(a/2)²=9a²/4=>BM=3a/2.
3)C1М из прямоуг.тр-ка C1D1M:C1M²=MD1²+C1D1²;C1M²=(a/2)²+a²=5a²/4.
4)BC1²=BB1²+B1C1²;BC1²=a²+a²=2a²
5)применим т.косинусов для тр-ка ВС1М:C1M²=BC1²+BM²-2*BC1*BM*cosa
5a²/4=2a²+9a²/4-2*(aV2)*(3a/2)*cosa
3a²V2cosa=2a²+9a²/4-5a²/4
3a²V2cosa=3a²
V2cosa=1
cosa=1/V2=V2/2
a=45
ответ:45 гр.
Если есть вопросы-обращайтесь.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия