1. Найдите площадь равнобедренного треугольника со сторонами 10см, 10см и 12 см.
2. В параллелограмме две стороны 12 и 16 см, а один из углов 150°. Найдите площадь параллелограмма.
3. В равнобедренной трапеции боковая сторона равна 13 см, основания 10 см и 20 см. Найдите площадь трапеции.
4. В треугольнике АВС прямая MN , параллельная стороне АС, делит сторону ВС на отрезки BN=15 см и NC=5 см, а сторону АВ на ВМ и АМ. Найдите длину отрезка MN, если АС=15 см.
5. В прямоугольном треугольнике АВС =90°, АС=8 см, =45°. Найдите:
а)АС; б) высоту СD, проведенную к гипотенузе.
6. Дан прямоугольный треугольник АВС, у которого С-прямой, катет ВС=6 см и А=60°. Найдите:
а) остальные стороны ∆АВС
б) площадь ∆АВС
в) длину высоты, опущенной из вершины С

Masha1111222555 Masha1111222555    1   14.05.2020 09:41    2

Ответы
муля15 муля15  14.10.2020 18:01

Не шнлелплплмлмдс

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
MogekoKcalb MogekoKcalb  14.10.2020 18:01

1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.

АВ=ВС=10 см

Проведем высоту ВН

Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.

Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.

Теперь по теореме Пифагора находим катет ВН

ВН=корень из(АВ^2-АН^2)

ВН=корень из(64)

ВН=8см

Sтреугольника АВС=(ВН*АС)/2

S=(8*12)/2

S=48 кв. см

ответ:48 кв.см.

2)параллелограмм ABCD 

Проведём из угла В на AD высоту BK. 

∆ABK-прямоугольный. ےА=30° 

Следовательно BK=AB:2, как катет, лежащий против угла 30° 

AB=12. Тогда BK=6; S=16×6=96 кв.см.

ответ:96 кв.см.

3)Дано:

АВСD-трапеция,

АВ=СD=13 см.

АD=20см

ВС=10см

Найти:S

Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см

Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН

ВН=корень из(АВ^2-AH^2)

ВН=корень из(169-25)

ВН=12 см.

S=((АD+ВС)/2)*ВН

S((20+10)/2)*12=180 кв.см.

ответ:180 кв.см

Подробнее - на -

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия