1)как можно провести прямую, проходящую через точку а и параллельную прямой а? 2)дан куб аbcda1b1c1d1.напишите попарно паралельные ребра куба с знака параллельности. 3)прямые а и b параллельны, а b и с не параллельны. докажите, что прямые а и с не параллельны. 4)даны две параллельные прямые. докажите ,что все прямые, которые пересекают эти прямые, лежат в одной плоскости.срок 2 дня и можно 3 и 4 с рисунком. заранее

соня177 соня177    1   13.03.2019 11:10    1

Ответы
Rj7 Rj7  25.05.2020 04:03
1) Через точку А проводим прямую "b", параллельную прямой "а".
Для этого:
a. Проводим окружность с центром в произвольной точке В на прямой "а" радиусом ВА.
b. На прямой "а" в месте пересечения с этой окружностью ставим точку С.
c. Проводим вторую  окружность с центром в точке С радиусом ВА.
d. Проводим третью окружность с центром в точке А радиусом ВА. Получаем точку D на пересечении этой и предыдущей окружностей.
e. Через точки D и А проводим прямую DА. Это и будет прямая "b", параллельная прямой "а".
Прямые "а" и "b" параллельны, так как АВСD - параллелограмм (ромб) по построению - все противоположные стороны попарно равны.
А так как по теореме: "Через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и при том только одну", то построенная нами прямая - единственная.

2) AA1║BB1, AA1║CC1, AA1║DD1, BB1║CC1, BB1║DD1, CC1║DD1.
AD║BC, AD║B1C1, AD║A1D1, BC║B1C1, BC║A1D1, B1C1║A1D1.
AB║A1B1, AB║D1C1, AB║DC, A1B1║D1C1, A1B1║DC, D1C1║DC.

3) АКСИОМА параллельных прямых: "Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной".  
Прямые b и с не параллельны (дано) значит они пересекаются в некоторой точке Р. Предположим, что прямые "а" и "с" параллельны. Тогда получается, что через точку Р проходит две прямые ("b" и "с"), параллельные прямой "а", что противоречит аксиоме параллельных прямых. Следовательно, прямые "а" и "с" не параллельны, что и требовалось доказать.

4) Пусть параллельные прямые "а" и "b" пересекаются третьей прямой "с" в точках А и В.
Теорема: "Через две параллельные прямые можно провести плоскость, и при том только одну". Пересекающиеся прямые имеют одну общую точку. Следовательно, точка А, принадлежащая прямой "а" и прямой "с", принадлежит плоскости α. Точно также, точка В, принадлежащая прямым "b" и "с", принадлежит плоскости α. Через две точки можно провести только одну прямую. А так как две точки (А и В) принадлежат одной плоскости, то и все точки прямой АВ, пересекающей параллельные прямые "а" и "b", лежат в этой плоскости. Это же касается и точек С и D, принадлежащих прямым "а" и "b" и любой другой прямой, пересекающей прямые "а" и "b". Что и требовалось доказать.

1)как можно провести прямую, проходящую через точку а и параллельную прямой а? 2)дан куб аbcda1b1c1d
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия