1. Если шар вписан в цилиндр, высота которого равна 6 см, то площадь поверхности шара равна

18π см² 32π см² 36π см² 64π см² Другой ответ

2. Если площадь поверхности шара равна 20 см², то площадь полной поверхности цилиндра, описанного вокруг шара равен

60 см² 40 см² 30 см² 20 см² Другой ответ

3. В конусе образующая равна 10 см и образует с плоскостью основания угол 30 ̊. Найдите радиус сферы, описанной вокруг конуса.

4. Найти площадь полной поверхности усеченного конуса, радиусы оснований которого равны 3 см и 5 см, если известно, что в осевое сечение конуса можно вписать окружность.

5. Через конец радиуса шара проведено сечение, образует с этим радиусом угол 300. Найти площадь поверхности шара, если площадь сечения равна 36π см2.

6. В конусе образующая равна 10 см и образует с плоскостью основания угол 60 ̊. Найдите радиус сферы, вписанной в конус.

7. В конус, осевое сечение которого является равносторонним треугольником, образующая равна 10 √3 см. Найдите радиус шара, вписанного в конус и радиус шара, описанного вокруг конуса.

8. В нижней основе цилиндра проведено хорду, которая видна из центра нижнего основания под углом 900, а из центра верхней основы - под углом 600 Найти площадь боковой поверхности цилиндра, если радиус основания его равна 8 см.

9. Производящая конуса наклонена к плоскости основания под углом α. Расстояние от вершины конуса до центра вписанной в него пули равна d. Найдите площадь боковой поверхности конуса.

EkimovaVlada EkimovaVlada    2   05.05.2020 12:32    8

Ответы
rogozhin0 rogozhin0  14.10.2020 07:25

1) 36пи см

2) 30 см

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия