1)диагональ,проведенная из острого угла параллелограмма,совпадает с биссектрисой этого угла.докажите,что этот параллелограмм является ромбом. 2)биссектрисы тупых углов при основании трапеции пересекаются на другом ее основании.докажите,что сумма боковых сторон трапеции равна большему основанию.
1) параллелограмм АВСД, диагональ АС соединяет острые углы, она же по условию и биссектриса, значит,
уг. ВАС = уг.ДАС
т.к. это параллелограмм, то стороны АД и ВС - параллельны, а значит,
уг. ДАС = уг ВСА , следовательно в треугольнике АВС углы ВАС = ВСА - т.е. он равнобедренный, т.е. АВ=ВС .
т.к. в параллелограмме противоположные стороны рваны, то
АВ = СД и ВС = АД, и значит, АВ=ВС=СД=АД - это ромб.
2) в трапеции АВСД, углы В и С - тупые, из них проведены биссектрисы ВН и СН и т.к. по условиям они пересекаются на другом основании, то Н - точка на стороне АД
т.к. ВН - биссектрисса, то уг. АВН = уг. СВН
т.к. АВСД - трапеция, то АД параллельно ВС, и значит, уг. СВН = ВНА
следовательно в треугольнике АВН углы ВНА = АВН - т.е. он равнобедренный, т.е. АВ=АН .
аналогично, получаем ,что треугольник СДН тоже равнобедренный и СД=ДН
т.к. АД = АН+ДН , то получаем искомое:
АД = АВ + СД