1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности, угол A равен 34 ˚ . Найдите угол C и угол B. 2. AB и AC – отрезки касательных, проведенных к окружности радиуса 8 см. Найдите длину OA и AC, если AB = 19 см. 3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 78 ˚ меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB. 4. Хорды MN и РК пересекаются в точке Е так, что ME= 17 см, NE = 51 см, РЕ = КЕ. Найдите РК.

dina249 dina249    1   26.05.2021 12:23    1

Ответы
машуня89 машуня89  25.06.2021 12:23

Відповідь:

Пояснення:

1. Так как АВ - диаметр, то △АВС прямоугольний, /_С=90°→ /_В=90-34=56°

2. AB и AC – отрезки касательных → АВ=АС=19

△АОС поямоугольний,/_ С=90° и ОС=8, АС=19 → по теореме Пифагора АО^2=ОС^2+СА^2=64+361=425

АО=20.6

3. 78:2=39

Градусная мера дуги АМ=180°

Тогда дуги АМВ=180+39=219°

а дуги АСВ=180-39=141°

/_AMB=1/2 АСВ=141/2=70.5°,

/_ABM=1/2 АМ=90°,

/_ACB=1/2 АМВ=219/2=109.5°

4.  ME= 17 см, NE = 51 см, РЕ = КЕ.

МЕ×ЕN=PE×EK

17×51=PE^2

PE=29.444863728

РК=2PE=58.889727456


1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности, угол A равен 34
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия