1. Четырехугольник ABCD параллело- грамм. Найти:
1) АВ – DB - CD: 2) CB + CD – ВА – DB:
3) АВ – CB + СА.

menoralle menoralle    3   03.12.2020 20:29    255

Ответы
romkagamernumbp0bv1q romkagamernumbp0bv1q  03.12.2020 20:30

)

\vec{AB}-\vec{DC}+\vec{BC} =\vec{AB}+\vec{BC}+\vec{CD} =\vec{AD}AB−DC+BC=AB+BC+CD=AD

Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn

2)

\begin{gathered}\vec{AD}-\vec{BA}+\vec{DB}+\vec{DC}=\vec{AD}+\vec{DB}-\vec{BA}+\vec{DC} ==\vec{AB}+\vec{AB}+\vec{DC} =2\vec{AB}+\vec{AB}=3\vec{AB}\end{gathered}AD−BA+DB+DC=AD+DB−BA+DC==AB+AB+DC=2AB+AB=3AB

Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).

3)

\begin{gathered}\vec{AB}+\vec{CA}-\vec{DA}=\vec{DC}+\vec{CA}+\vec{AD}==\vec{AD}+\vec{DC}+\vec{CA}=\vec{AA} =0\end{gathered}AB+CA−DA=DC+CA+AD==AD+DC+CA=AA=0

Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.

ответы:

1)\vec{AD};\; 2)\,3\vec{AB};\; 3)\,0.1)AD;2)3AB;3)0.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия