Закон движения грузика, прикреплённого к пружине, в отсутствии затухания имеет вид: x(t)=x0*sin(wt+φ0), где x0-амплитуда колебания, w-циклическая частота, φ0-начальная фаза. x0=0.06 м, w=1,57 рад/с, φ0=3π/2 определить начальную координату, начальные и максимальные значения скорости и ускорения грузика

Radon86 Radon86    3   02.10.2019 03:50    24

Ответы
ми34ми56 ми34ми56  17.08.2020 06:35

x(t)=x_0\sin(\omega t+\varphi_0)

x(t)=0.06\sin\left(1.57 t+\frac{3\pi}{2}\right )=-0.06\cos1.57t

Начальное положение тела:

x(0)=0.06(\cos1.57\cdot0)=-0.06

Скорость равна первой производной от координаты:

v(t)=x'(t)=(-0.06\cos(1.57t))'=0.06\cdot1.57\sin 1.57t=0.094\sin 1.57t

Начальная скорость v(0)=0

Максимальная скорость v_{max}=0.094

Ускорение равно второй производной от координаты, то есть первой от скорости:

a(t)=v'(t)=(0.094\sin 1.57t)'=0.148cos1.57t

Начальное ускорение a(0)=0.148

Максимальное ускорение a_{max}=0.148

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика