В джунглях Тарзан разбегался до максимальной скорости Vmax=8м/с, цеплялся за свешивающуюся вертикально вниз лиану и поднимался вверх. На какую максимальную высоту мог подняться Тарзан на лиане? Зависит ли высота от длины лианы?
Для решения этой задачи, нам понадобятся знания о законе сохранения механической энергии и условиях равновесия тела. Давайте посмотрим.
Закон сохранения механической энергии утверждает, что сумма кинетической энергии и потенциальной энергии остается постоянной. В данном случае, закон можно записать как:
mv^2/2 + mgh = const,
где m - масса Тарзана, v - его скорость, g - ускорение свободного падения, h - высота, на которую поднялся Тарзан.
Так как Тарзан двигается по вертикальной траектории, скорость лианы будет увеличена на высоте h, то есть v = 0 на этой высоте. Поэтому можно записать:
mv^2/2 + mgh = mgH,
где H - высота, на которую поднялся Тарзан.
Теперь у нас есть уравнение, связывающее скорость и высоту. Давайте решим его и найдем H.
mv^2/2 + mgh = mgH,
перепишем это уравнение:
mv^2/2 = mg(H - h),
уберем массу m, так как она сокращается:
v^2/2 = g(H - h).
Теперь мы можем решить это уравнение относительно высоты H:
H - h = v^2/(2g),
H = h + v^2/(2g).
Таким образом, максимальная высота, на которую поднялся Тарзан на лиане, равна h + v^2/(2g).
Ответ: Максимальная высота, на которую поднялся Тарзан на лиане, равна h + v^2/(2g). Высота не зависит от длины лианы, только от начальной высоты, с которой начиналось подъем Тарзана.
Закон сохранения механической энергии утверждает, что сумма кинетической энергии и потенциальной энергии остается постоянной. В данном случае, закон можно записать как:
mv^2/2 + mgh = const,
где m - масса Тарзана, v - его скорость, g - ускорение свободного падения, h - высота, на которую поднялся Тарзан.
Так как Тарзан двигается по вертикальной траектории, скорость лианы будет увеличена на высоте h, то есть v = 0 на этой высоте. Поэтому можно записать:
mv^2/2 + mgh = mgH,
где H - высота, на которую поднялся Тарзан.
Теперь у нас есть уравнение, связывающее скорость и высоту. Давайте решим его и найдем H.
mv^2/2 + mgh = mgH,
перепишем это уравнение:
mv^2/2 = mg(H - h),
уберем массу m, так как она сокращается:
v^2/2 = g(H - h).
Теперь мы можем решить это уравнение относительно высоты H:
H - h = v^2/(2g),
H = h + v^2/(2g).
Таким образом, максимальная высота, на которую поднялся Тарзан на лиане, равна h + v^2/(2g).
Ответ: Максимальная высота, на которую поднялся Тарзан на лиане, равна h + v^2/(2g). Высота не зависит от длины лианы, только от начальной высоты, с которой начиналось подъем Тарзана.
Элементарно. mv^2/2 = mgh Не забудь массу сократить