Скорость частицы движущейся вдоль оси x, изменяется со временем по закону v= (1-2bt)i, где в - положительная постоянная. в момент t=0 координата частицы x0=0. найти промежуток времени, по истечении которого частица вернется в исходную точку, а также путь, который она пройдет за это время.

znj93294znj93294 znj93294znj93294    1   22.05.2019 18:00    2

Ответы
liza10pav liza10pav  18.06.2020 07:25
v=(1-2Bt)i
Где i- орт оси ОХ, то есть получаем:
v_x=1-2Bt
Так как:
t=0\\x(t)=x_o+v_ot+\cfrac{at^2}{2}\\v_ot+\cfrac{at^2}{2}=0\\v=v_o+at=1-2Bt\\v_o=1\\a=-2B\\t-Bt^2=0\\t=0\\t=\cfrac{1}{B}
Координата возвращается к исходной, через время равное 1/В, тогда путь пройденный за время равное половине времени движения будет равен
S=v_ot+\cfrac{at^2}{2}\\v_o=1\\a=-2B\\S=t-Bt^2\\S\left(\cfrac{t}{2}\right)=\cfrac{1}{2B}-\cfrac{B}{4B^2}=\cfrac{1}{2B}
Тогда весь путь будет равен:
L=2S=\cfrac{1}{B}
ответ: t=\cfrac{1}{B}
S=\cfrac{1}{B}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика