Ротор турбины диаметром 40 см вращается с частотой 12 000 об / мин. Каковы центростремительное ускорение и угловая скорость концов лопаток турбины

ваноумно ваноумно    3   17.10.2020 07:27    194

Ответы
блабла70 блабла70  20.12.2023 16:52
Для решения данной задачи, нам потребуются формулы для вычисления центростремительного ускорения и угловой скорости. Центростремительное ускорение (a) определяется следующей формулой: a = R * ω^2 где R - радиус вращения (в нашем случае, половина диаметра ротора) и ω - угловая скорость в радианах в секунду (она выражается через количество оборотов в минуту). Переведем частоту вращения турбины из оборотов в минуту в радианы в секунду: ω = 2π * f где f - частота вращения в Герцах. Теперь, подставим данное значение в формулу для угловой скорости и найдем ее: ω = 2π * 12000 / 60 ω = 400π рад/с Далее, найдем радиус вращения: R = D / 2 = 40 / 2 = 20 см = 0,2 м И, наконец, подставим значения радиуса и угловой скорости в формулу для центростремительного ускорения: a = 0,2 * (400π)^2 a ≈ 7 962 м/с^2 Таким образом, центростремительное ускорение концов лопаток турбины составляет около 7 962 м/с^2, а их угловая скорость примерно равна 400π рад/с.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика