При изотермическом расширении от 20 л двух молей газа его давление меняется от 5 атм до 4 атм. Найти совершаемую при этом работу и температуру, при которой протекает процесс.
Добро пожаловать в наш класс, где мы будем изучать термодинамику и решать задачу о работе и температуре при изотермическом расширении газа.
Для решения этой задачи мы можем использовать формулу для работы, совершенной газом при изотермическом процессе:
W = nRT * ln(V2/V1),
где W - работа, совершаемая газом, n - количество вещества газа (в молях), R - универсальная газовая постоянная (значение 8,314 Дж/(моль·К) ), T - температура газа (в кельвинах), V2 и V1 - объемы газа в конечном и начальном состояниях соответственно.
Также, поскольку процесс изотермический, мы можем использовать уравнение идеального газа:
P1*V1 = P2*V2,
где P1 и P2 - давления газа в начальном и конечном состояниях соответственно.
Теперь мы можем приступить к решению задачи.
У нас дано, что V1 = 20 л, n = 2 моль, P1 = 5 атм и P2 = 4 атм.
1. Рассчитаем объем V2, используя уравнение идеального газа:
P1*V1 = P2*V2,
5 атм * 20 л = 4 атм * V2,
100 л·атм = 4 атм * V2.
Делим обе части уравнения на 4 атм:
25 л = V2.
Таким образом, V2 = 25 л.
2. Теперь мы можем рассчитать совершаемую работу, используя формулу:
W = nRT * ln(V2/V1).
Подставляем известные значения:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(25 л / 20 л).
Simplify the natural logarithm:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(5/4).
Упростим выражение:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(1,25).
3. Нам также задали вопрос о температуре, при которой происходит изотермический процесс.
Чтобы решить этот вопрос, мы можем использовать уравнение идеального газа в начальном состоянии:
P1*V1 = nRT.
Разрешаем уравнение относительно T:
T = P1*V1 / (n*R).
Подставляем известные значения:
T = 5 атм * 20 л / (2 моль * 8,314 Дж/(моль·К)).
T = 50 атм·л / (1,66 Дж/К).
T ≈ 30,12 К.
Итак, мы получаем, что совершенная работа равна 2 моль * 8,314 Дж/(моль·К) * T * ln(1,25), а температура, при которой происходит процесс, равна примерно 30,12 К.
Для решения этой задачи мы можем использовать формулу для работы, совершенной газом при изотермическом процессе:
W = nRT * ln(V2/V1),
где W - работа, совершаемая газом, n - количество вещества газа (в молях), R - универсальная газовая постоянная (значение 8,314 Дж/(моль·К) ), T - температура газа (в кельвинах), V2 и V1 - объемы газа в конечном и начальном состояниях соответственно.
Также, поскольку процесс изотермический, мы можем использовать уравнение идеального газа:
P1*V1 = P2*V2,
где P1 и P2 - давления газа в начальном и конечном состояниях соответственно.
Теперь мы можем приступить к решению задачи.
У нас дано, что V1 = 20 л, n = 2 моль, P1 = 5 атм и P2 = 4 атм.
1. Рассчитаем объем V2, используя уравнение идеального газа:
P1*V1 = P2*V2,
5 атм * 20 л = 4 атм * V2,
100 л·атм = 4 атм * V2.
Делим обе части уравнения на 4 атм:
25 л = V2.
Таким образом, V2 = 25 л.
2. Теперь мы можем рассчитать совершаемую работу, используя формулу:
W = nRT * ln(V2/V1).
Подставляем известные значения:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(25 л / 20 л).
Simplify the natural logarithm:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(5/4).
Упростим выражение:
W = 2 моль * 8,314 Дж/(моль·К) * T * ln(1,25).
3. Нам также задали вопрос о температуре, при которой происходит изотермический процесс.
Чтобы решить этот вопрос, мы можем использовать уравнение идеального газа в начальном состоянии:
P1*V1 = nRT.
Разрешаем уравнение относительно T:
T = P1*V1 / (n*R).
Подставляем известные значения:
T = 5 атм * 20 л / (2 моль * 8,314 Дж/(моль·К)).
T = 50 атм·л / (1,66 Дж/К).
T ≈ 30,12 К.
Итак, мы получаем, что совершенная работа равна 2 моль * 8,314 Дж/(моль·К) * T * ln(1,25), а температура, при которой происходит процесс, равна примерно 30,12 К.