Объяснение:
T=2 \pi * \sqrt{LC}
\sqrt{LC}= \frac{T}{2 \pi }
( \sqrt{LC}) ^{2}=( \frac{T}{2 \pi }) ^{2}
LC= \frac{T ^{2} }{4 \pi ^{2} }
C= \frac{T ^{2} }{4 \pi ^{2} }:L= \frac{T ^{2} }{4 \pi ^{2} }* \frac{1}{L}= \frac{T ^{2} }{4 \pi ^{2}L }
C= \frac{T ^{2} }{4 \pi ^{2}L }
Объяснение:
T=2 \pi * \sqrt{LC}
\sqrt{LC}= \frac{T}{2 \pi }
( \sqrt{LC}) ^{2}=( \frac{T}{2 \pi }) ^{2}
LC= \frac{T ^{2} }{4 \pi ^{2} }
C= \frac{T ^{2} }{4 \pi ^{2} }:L= \frac{T ^{2} }{4 \pi ^{2} }* \frac{1}{L}= \frac{T ^{2} }{4 \pi ^{2}L }
C= \frac{T ^{2} }{4 \pi ^{2}L }