Две противоположные грани куба с ребром а = 10 мм из диэлектрического материала с удельным объемным сопротивлением Pv = 10^10 Ом ⋅ м и удельным поверхностным сопротивлением Ps = 11^10 Ом покрыты

металлическими электродами. Определить ток, протекающий через эти

грани куба при постоянном напряжении U=2 кВ.

DenisBru4anovvv DenisBru4anovvv    3   16.02.2022 04:02    6

Ответы
Desant1111 Desant1111  16.02.2022 06:00
— видимо, – Ом*м) и удельное поверхностное сопротивление σ = 5·10^12 Ом. На противоположные грани кубика нанесены электроды, к которым приложено напряжение частотой f = 1 МГц. Определить модуль комплексной проводимости Σ кубика на этой частоте, если его диэлектрическая проницаемость ε = 60.

— Электроды, видимо, по площади равны площадям граней кубика: S = L² = 0,0036 м². Они образуют плоский конденсатор с емкостью С = ε°εS/d, где ε° — электрическая постоянная (См. Рис. ).

— Этот конденсатор «соединён» параллельно с активным сопротивлением R диэлектрического кубика. Оно состоит из двух “последовательно соединенных частей — R1 (объемной) и R2 (поверхностной — на 2-х контактах с электродами).

— R1 = ρ*L/L² = ρ/L; R2 = 2*σ*L².

— R = R1 + R2.

— Частота ω напряжения: ω = 2пf.

— Ёмкостное сопротивление Х (с) = 1/(ωС) = 1/(2пf*C).

— Z(R,C) = √ { R² + (X(c))² } .

— Проводимость обратно пропорциональна сопротивлению: Σ = 1/Z(R,C).

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Физика