Два плоских зеркала образуют двухгранный угол. Внутри этого угла находится точечный источник S. Источник S и два его первичных изображения в этих зеркалах образуют равнобедренный треугольник с углами при основании,равными 75°. Найти угол между зеркалами и их расположение относительно источника
Строим изображение точки S в зеркале MN, отображая эту точку симметрично относительно плоскости MN Получаем первое изображение S1. Аналогично строим изображение точки S в зеркале ML, получаем второе изображение S2. Так как ΔS1MC=ΔSMC=ΔSMK=ΔS2MK (по двум катетам), то S1M=SM=S2M. Следовательно, точки S1,S,S2 расположены на одной окружности с центром в точке M и радиусом SM. Далее строим изображение точки S1 в зеркале ML и изображение точки S2 в зеркале МN. Получаем соответственно точки S3 и S4. При этом вероятна ситуация, когда не хватает плоскости зеркал. В этом случае плоскости зеркал надо продолжить. Поскольку S1 и S3 симметричны относительно плоскости ML, a S2 и S4 симметричны относительно плоскости MN, то S3 и S4 находятся на построенной окружности. Далее строим изображение точки S3 в зеркале МN и точки S4 - в зеркале ML. Так как ∠NML=α=60∘, то изображением точек S3 и S4 является точка S5. Итак, получается пять изображений. Источник: https://earthz.ru/solves/Zadacha-po-fizike-3201
Объяснение:
Строим изображение точки S в зеркале MN, отображая эту точку симметрично относительно плоскости MN Получаем первое изображение S1. Аналогично строим изображение точки S в зеркале ML, получаем второе изображение S2. Так как ΔS1MC=ΔSMC=ΔSMK=ΔS2MK (по двум катетам), то S1M=SM=S2M. Следовательно, точки S1,S,S2 расположены на одной окружности с центром в точке M и радиусом SM. Далее строим изображение точки S1 в зеркале ML и изображение точки S2 в зеркале МN. Получаем соответственно точки S3 и S4. При этом вероятна ситуация, когда не хватает плоскости зеркал. В этом случае плоскости зеркал надо продолжить. Поскольку S1 и S3 симметричны относительно плоскости ML, a S2 и S4 симметричны относительно плоскости MN, то S3 и S4 находятся на построенной окружности. Далее строим изображение точки S3 в зеркале МN и точки S4 - в зеркале ML. Так как ∠NML=α=60∘, то изображением точек S3 и S4 является точка S5. Итак, получается пять изображений. Источник: https://earthz.ru/solves/Zadacha-po-fizike-3201