Брусок массой 400г поднимают по наклонной плоскости, длина которого 70см, высота 40см с нити, перекинутой через блок, расположенной наверху наклонной плоскости. ускорение груза 6м/с2. какая работа при этом совершается, если коэффициент трения 0,3?
Вот здесь смотри 2 пример: там как раз тело заезжает наверх с ускорением. рисунок там же есть. угол наклона α sin α = h/l = 0,4/0,7 = 4/7, cos α = √(1 - sin^2 α) = √(1 - 16/49) = √33 / 7 k = 0,3 - коэффициент трения формула движения такая: mg + n + ft + ftr = ma mg - сила тяжести, n - реакция опоры, ft - сила тяги, неизвестна, ftr - сила трения. r = mg + n - скатывающая равнодействующая справа a - ускорение, ma = f - сила по 2 закону ньютона. поскольку сила тяги ft и сила f=ma действуют вверх, а r и ftr вниз, расставим знаки -r + ft - ftr = ma r = mg + n = mg*sin α = 0,4*0,98*4/7 = 0,224 н n = mg*cos α = 0,4*0,98*√33/7 = 0,056*√33 ~ 0,3217 н ftr = k*n = 0,3*0,056*√33 ~ 0,0965 н ma = 0,4*6 = 2,4 н подставляем -0224 + ft - 0,0965 = 2,4 ft = 2,4 + 0,224 + 0,0965 = 2,7205 н работа равна силе, умноженной на перемещение. перемещение l = 70 см = 0,7 м a = ft*l = 2,7205*0,7 = 1,90435 н*м