17. Половина объема ванны заполнена водой, име- ющей температуру 25°С. Какой станет темпера- тура воды, если налить в ванну воду при темпе- ратуре 70°С и при этом 75% объема ванны бу- дет занято водой? A) 40. В) 36. C) 32. D) 28. E) 24.
Очевидно, что вода, которая уже находится в ванной, будет поглощать тепло добавленной воды, так как её температура ниже:
t1 < t2.
Добавленная же вода будет отдавать тепло. Количество этого тепла будет одинаковым для обоих объёмов воды, как и температура t3 - температура объёма V1 будет повышаться до t3, а температура объёма V2 будет понижаться до t3. Можем записать уравнение теплового баланса:
Q1 = Q2
Q = cmΔt
Представим массу как произведение плотности и объёма:
m2 = p*V2 = p*0,25V. Подставим выражения масс в уравнения для их Q:
Q1 = cm1Δt = c*p*0,5V*Δt
Δt = t3 - t1 => Q1 = c*p*0,5V*(t3 - t1)
Q2 = cm2Δt' = c*p*0,25V*Δt'
Δt' = t3 - t2 => Q2 = c*p*0,25V*(t3 - t2). Приравняем согласно тепловому балансу:
Q1 = Q2
c*p*0,5V*(t3 - t1) = c*p*0,25V*(t3 - t2)
Однако изменение температуры того объёма воды, который отдаёт тепло Q2, оказывается отрицательным. Чтобы не нарушать равенства, возьмём эту разницу под знак модуля и сделаем перестановку переменных:
|Δt'| = |t3 - t2| = |t2 - t3|, тогда:
c*p*0,5V*(t3 - t1) = c*p*0,25V*|t2 - t3| - в физическом смысле объём воды V2 теперь не отдаёт тепло, а получает его (мы избавились от знака "минус" перед Q2). Конечно, в реальности он всё так же отдаёт тепло, но для решения вопроса нам "на руку" именно обратное действие. Далее сократим обе части равенства на (c*p*V):
Дано:
t1 = 25 °C
t2 = 70 °C
V1 = 0,5V
V1 + V2 = 0,75V
t3 - ?
Очевидно, что вода, которая уже находится в ванной, будет поглощать тепло добавленной воды, так как её температура ниже:
t1 < t2.
Добавленная же вода будет отдавать тепло. Количество этого тепла будет одинаковым для обоих объёмов воды, как и температура t3 - температура объёма V1 будет повышаться до t3, а температура объёма V2 будет понижаться до t3. Можем записать уравнение теплового баланса:
Q1 = Q2
Q = cmΔt
Представим массу как произведение плотности и объёма:
m = р*V, тогда
m1 = р*V1 = p*0,5V
m2 = p*V2
V2 выразим из уравнения:
V1 + V2 = 0,75V => V2 = 0,75V - V1 = 0,75V - 0,5V = V*(0,75 - 0,5) = 0,25V, значит
m2 = p*V2 = p*0,25V. Подставим выражения масс в уравнения для их Q:
Q1 = cm1Δt = c*p*0,5V*Δt
Δt = t3 - t1 => Q1 = c*p*0,5V*(t3 - t1)
Q2 = cm2Δt' = c*p*0,25V*Δt'
Δt' = t3 - t2 => Q2 = c*p*0,25V*(t3 - t2). Приравняем согласно тепловому балансу:
Q1 = Q2
c*p*0,5V*(t3 - t1) = c*p*0,25V*(t3 - t2)
Однако изменение температуры того объёма воды, который отдаёт тепло Q2, оказывается отрицательным. Чтобы не нарушать равенства, возьмём эту разницу под знак модуля и сделаем перестановку переменных:
|Δt'| = |t3 - t2| = |t2 - t3|, тогда:
c*p*0,5V*(t3 - t1) = c*p*0,25V*|t2 - t3| - в физическом смысле объём воды V2 теперь не отдаёт тепло, а получает его (мы избавились от знака "минус" перед Q2). Конечно, в реальности он всё так же отдаёт тепло, но для решения вопроса нам "на руку" именно обратное действие. Далее сократим обе части равенства на (c*p*V):
c*p*0,5V*(t3 - t1) = c*p*0,25V*|t2 - t3| | : (c*p*V)
0,5*(t3 - t1) = 0,25*|t2 - t3| - теперь можно найти t3, раскрыв скобки в левой части и модуль в правой:
0,5t3 - 0,5t1 = 0,25t2 - 0,25t3
0,5t3 + 0,25t3 = 0,25t2 + 0,5t1
t3*(0,5 + 0,25) = 0,25t2 + 0,5t1
t3 = (0,25t2 + 0,5t1)/(0,5 + 0,25) = (0,25*70 + 0,5*25)/0,75 = (17,5 + 12,5)/0,75 = 30/0,75 = 30*100/75 = 6*100/15 = 2*100/5 = 200/5 = 40 °С
ответ: 40 °С. А)