1.Маленькие одинаковые капли ртути заряжены одноименно до потенциала ф каждая, Определите потенциал большой капли, образовавшейся при слиянии n таких капель. (ответ: ф=∛n²*Ф₀) 2.Три конденсатора емкостью 12 мкФ рассчитаны на напряжение 600 В. Какие
емкости можно получить и каковы допустимые напряжения в каждом случае?
3.Заряженный конденсатор подключили параллельно к такому же незаряженному, Во сколько раз изменилась энергия поля?
4.Потенциалы шаров емкостью 6,0 и 9,0 пФ равны 2,0 - 10² и 8,0 • 10² В, соответственно. Найдите суммарный заряд обоих шаров. Определите потенциал шаров после соприкосновения.
(ответ: 8,4 *10⁻⁹ Кл; 560 B)
При слиянии, все заряды складываются. Таким образом, общий заряд большой капли будет q = n*q₀ = n*ф.
Пусть потенциал большой капли будет равен Ф.
Так как потенциал определяется формулой Ф = q/C, то в данном случае Ф = (n*ф)/С, где С - емкость большой капли.
Однако, емкость конденсатора определяется формулой С = q/Ф₀, где Ф₀ - потенциал каждой из маленьких капель.
Таким образом, C = (n*ф)/(n*Ф₀) = ф/Ф₀.
Теперь мы можем выразить потенциал Ф через ф и Ф₀:
Ф = ф/C = ф/(ф/Ф₀) = Ф₀.
Таким образом, потенциал большой капли при слиянии n одинаковых капель будет равен Ф₀.
Ответ: ф = ∛(n²*Ф₀).
2. У нас есть три конденсатора емкостью 12 мкФ, все они рассчитаны на напряжение 600 В.
Чтобы определить возможные емкости и допустимые напряжения в каждом случае, мы можем использовать формулу энергии конденсатора:
W = (1/2) * C * V²,
где W - энергия конденсатора, C - его емкость, V - напряжение.
Если мы рассматриваем только один конденсатор емкостью 12 мкФ, то его максимальное напряжение равно 600 В.
Теперь, если мы соединим два таких конденсатора параллельно, емкость будет суммироваться, так как они соединены одинаковыми положительными пластинами:
C₁ = C₂ = 12 мкФ + 12 мкФ = 24 мкФ.
Допустимое напряжение на каждом конденсаторе останется таким же и равно 600 В.
Таким образом, мы можем получить емкость 24 мкФ с допустимым напряжением 600 В, если соединим два конденсатора емкостью 12 мкФ параллельно.
Теперь рассмотрим случай, когда мы соединяем три конденсатора емкостью 12 мкФ последовательно.
В этом случае общая емкость будет обратной сумме обратных емкостей:
1/C = 1/C₁ + 1/C₂ + 1/C₃ = 1/(12 мкФ) + 1/(12 мкФ) + 1/(12 мкФ) = 3/(12 мкФ) = 1/(4 мкФ).
Таким образом, общая емкость будет равна 4 мкФ.
Допустимое напряжение при соединении конденсаторов в цепи последовательно равно минимальному из допустимых напряжений:
Допустимое напряжение = 600 В.
Таким образом, мы можем получить емкость 4 мкФ с допустимым напряжением 600 В, если соединим три конденсатора емкостью 12 мкФ последовательно.
Ответ:
- Если соединить два конденсатора емкостью 12 мкФ параллельно, получим емкость 24 мкФ с допустимым напряжением 600 В.
- Если соединить три конденсатора емкостью 12 мкФ последовательно, получим емкость 4 мкФ с допустимым напряжением 600 В.
3. Когда заряженный конденсатор подключают параллельно к такому же незаряженному, общая емкость увеличивается в два раза.
Энергия поля в конденсаторе определяется формулой W = (1/2) * C * V².
Таким образом, энергия поля до подключения будет W₁ = (1/2) * C₁ * V₁², а после подключения - W₂ = (1/2) * C₂ * V₂².
Так как емкость увеличилась в два раза (C₂ = 2*C₁), а напряжение на конденсаторе не изменилось (V₂ = V₁), то энергия поля после подключения будет равна:
W₂ = (1/2) * (2*C₁) * V₁² = C₁ * V₁².
Отношение энергии поля после и до подключения будет:
W₂/W₁ = (C₁ * V₁²) / ((1/2) * C₁ * V₁²) = 2.
Таким образом, энергия поля изменится в два раза.
Ответ: Энергия поля изменится в два раза.
4. Для решения данной задачи, мы можем использовать формулу определения емкости конденсатора:
C = q/V.
Где C - емкость конденсатора, q - его заряд, V - его потенциал.
Мы знаем, что потенциал шара емкостью 6,0 пФ равен 2,0 * 10² В, а емкость шара емкостью 9,0 пФ равен 8,0 * 10² В.
Пусть заряд шара емкостью 6,0 пФ будет q₁, а емкости шара емкостью 9,0 пФ будет q₂.
Используя формулу C = q/V, мы можем выразить заряд шара q₁ и q₂:
q₁ = C₁ * V₁ = 6,0 пФ * 2,0 * 10² В = 1,2 * 10⁻⁷ Кл,
q₂ = C₂ * V₂ = 9,0 пФ * 8,0 * 10² В = 7,2 * 10⁻⁷ Кл.
Суммарный заряд обоих шаров будет равен:
q = q₁ + q₂ = 1,2 * 10⁻⁷ Кл + 7,2 * 10⁻⁷ Кл = 8,4 * 10⁻⁷ Кл.
Теперь, чтобы определить потенциал шаров после соприкосновения, мы можем использовать формулу:
q = C * V,
где q - заряд, C - емкость, V - потенциал.
Мы знаем, что суммарный заряд равен 8,4 * 10⁻⁹ Кл и емкость равна 15 пФ.
Таким образом, V = q/C = (8,4 * 10⁻⁹ Кл) / (15 пФ) = 560 В.
Ответ: Суммарный заряд обоих шаров равен 8,4 * 10⁻⁹ Кл, а потенциал шаров после соприкосновения - 560 В.