Решение:
Докажем от противного, что получить звание мастера могли не более 7 участников турнира. Пусть их было 8. Тогда каждый набрал не менее 0,7*11=7,7 очка, то есть не менее 8 очков. Таким образом, все они в сумме набрали не менее 8*8=64 очков. При этом в партиях с участниками, не получившими звание мастера, каждый из них набрал не более 4 очков (даже если выиграл все партии). Это даёт не более 4*8 = 32 очков.
Значит, участники, ставшие мастерами, должны были набрать в партиях между собой не менее 32 очков.
Подсчитаем, сколько партий сыграли между собой эти 8 мастеров. Если мы будем результаты партий записывать в таблицу 8*8, то у нас останется свободной диагональ (так как партий с самим собой не играется) и на каждую партию будет выделено по две клетки: в строке одного из игроков и в строке другого. Таким образом, партий будет (8*8-8)/2=28. В каждой партии разыгрывается одно очко, поэтому в этих партиях мастера в сумме наберут ровно 28 очков, что меньше 32. Противоречие.
Если же звание мастера получили 9 или более участников, то они должны были набрать не менее 72 очков, в то время как всего в турнире разыгрывалось (12*11)/2=66 очков. Теперь приведём пример турнира, в котором звание мастера получили 7 участников. Пусть первые 7 (по списку) участников всегда выигрывали у последних 5, а все остальные партии завершились вничью. Тогда первые 7 участников набрали по 1*5+0,5*6=8 очков, а последние 5 - по 0*7+0,5*4=2 очка
Докажем от противного, что получить звание мастера могли не более 7 участников турнира. Пусть их было 8. Тогда каждый набрал не менее 0,7*11=7,7 очка, то есть не менее 8 очков. Таким образом, все они в сумме набрали не менее 8*8=64 очков. При этом в партиях с участниками, не получившими звание мастера, каждый из них набрал не более 4 очков (даже если выиграл все партии). Это даёт не более 4*8 = 32 очков.
Значит, участники, ставшие мастерами, должны были набрать в партиях между собой не менее 32 очков.
Подсчитаем, сколько партий сыграли между собой эти 8 мастеров. Если мы будем результаты партий записывать в таблицу 8*8, то у нас останется свободной диагональ (так как партий с самим собой не играется) и на каждую партию будет выделено по две клетки: в строке одного из игроков и в строке другого. Таким образом, партий будет (8*8-8)/2=28. В каждой партии разыгрывается одно очко, поэтому в этих партиях мастера в сумме наберут ровно 28 очков, что меньше 32. Противоречие.
Если же звание мастера получили 9 или более участников, то они должны были набрать не менее 72 очков, в то время как всего в турнире разыгрывалось (12*11)/2=66 очков. Теперь приведём пример турнира, в котором звание мастера получили 7 участников. Пусть первые 7 (по списку) участников всегда выигрывали у последних 5, а все остальные партии завершились вничью. Тогда первые 7 участников набрали по 1*5+0,5*6=8 очков, а последние 5 - по 0*7+0,5*4=2 очка