В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм

AutWezer AutWezer    1   17.04.2019 03:20    9

Ответы
jsjdjznnxnx jsjdjznnxnx  17.04.2019 03:20
Рассмотрим треугольники АЕМ и CKF.
АM = CF (по условию задачи)
/A=/C (по свойству параллелограмма)
Т.к. AB=CD (по свойству параллелограмма), а BE = DK (по условию), то АE=CK.
Следовательно, треугольники АЕМ и CKF равны (по первому признаку).
Поэтому ЕМ=FK.
Аналогично доказывается, что треугольники EBF и KDM тоже равны, следовательно EF=MK.
Т.е. противоположные стороны данного четырехугольника равны. Соответственно этот четырехугольник - параллелограмм (по свойству параллелограмма).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы