В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=169°. Найдите угол между диагоналями параллелограмма. ответ дайте в градусах

dinafait2001 dinafait2001    1   17.04.2019 03:20    9

Ответы
Обозначим точку пересечения диагоналей как О.
По свойству параллелограмма AO=OC=AC/2.
AB=CD (по другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD - равнобедренный.
По свойству равнобедренного треугольника ∠COD=∠CDO.
По теореме о сумме углов треугольника: 180°=∠COD+∠CDO+∠ACD=∠COD+∠CDO+169°
∠COD+∠CDO=11°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=11°/2=5,5°
∠COD - острый угол между диагоналями.
Следовательно,
∠COB=180°-∠COD=180°-5,5°=174,5° (т.к. это смежные углы) - тупой угол между диагоналями.
Ответ: острый угол между диагоналями параллелограмма (∠COD) равен 5,5°, тупой угол между диагоналями равен 174,5°
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы