Обозначим точку пересечения диагоналей как О.
По свойству параллелограмма AO=OC=AC/2.
AB=CD (по другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD - равнобедренный.
По свойству равнобедренного треугольника /COD=/CDO.
По теореме о сумме углов треугольника:
180°=∠COD+∠CDO+∠ACD=∠COD+CDO+1°
∠COD+∠CDO=179°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=179°/2=89,5°
Второй угол между диагоналями:
∠BOC=180°-∠COD (т.к. угол BOD - развернутый и равен 180°)
∠BOC=180°-89,5°=90,5°
Ответ: ∠COD=89,5°, ∠BOC=90,5
По свойству параллелограмма AO=OC=AC/2.
AB=CD (по другому свойству).
А так как AC в 2 раза больше стороны AB (по условию задачи), то OC=AB=CD.
Следовательно треугольник OCD - равнобедренный.
По свойству равнобедренного треугольника /COD=/CDO.
По теореме о сумме углов треугольника:
180°=∠COD+∠CDO+∠ACD=∠COD+CDO+1°
∠COD+∠CDO=179°, а так как ∠COD=∠CDO (это мы выяснили ранее), то ∠COD=∠CDO=179°/2=89,5°
Второй угол между диагоналями:
∠BOC=180°-∠COD (т.к. угол BOD - развернутый и равен 180°)
∠BOC=180°-89,5°=90,5°
Ответ: ∠COD=89,5°, ∠BOC=90,5