В каждой из трех урн содержится 6 черных 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну

drwnd drwnd    1   17.04.2019 00:00    59

Ответы
AndrewDremin AndrewDremin  17.04.2019 00:00
Решение.
A1 – вероятность того, что из первой урны извлечен белый шар.
A2 – вероятность того, что из первой урны извлечен черный шар.
P(A1)=4/10 P(A2)=6/10
B1 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну белый шар.
B2 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну черный шар.
P(B1)=5/11 P(B2)=4/11
C1 – вероятность того, что из второй корзины будет извлечен белый шар.
C2 – вероятность того, что из второй корзины будет извлечен черный шар.
P(C1)=P(A1)*P(B1)+P(A2)*P(B2)
P(C1)=4/10*5/11+6/10*4/11=2/5
P(C2)=1-P(C1)
P(C2)=1-2/5=3/5
D1 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну белый шар.
D2 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну черный шар.
P(D1)=5/11 P(D2)=4/11
E – вероятность того, что из третьей урны будет извлечен белый шар.
P(E)= P(D1)*P(C1)+P(D2)*P(C2) P(E)=5/11*2/5+4/11*3/5=2/5
Ответ: 2/5.
ПОКАЗАТЬ ОТВЕТЫ
alimzhanbolathan alimzhanbolathan  17.04.2019 00:00

решение к заданию по математике
 В каждой из трех урн содержится 6 черных 4 белых ш

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы