В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий

МарусяПанда2006 МарусяПанда2006    1   17.04.2019 00:50    17

Ответы
helenodecca helenodecca  17.04.2019 00:50
Решение.
Объем цилиндра найдем по формуле:

V = пR2h
где:
R - радиус основания прямого цилиндра,  
h - высота.

Найдем основание цилиндра. 1-й способ.
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Радиус окружности, описанной вокруг треугольника найдем по формуле:

R = a / 2 sin α
где:
a - сторона треугольника
α - угол, противолежащий стороне а.

Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:

R = 2a / 2 sin 30 = 2a

Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a

Найдем высоту цилиндра.
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй - высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.

Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 - 45 - 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:

V = пR2h
V = п*4a2*4a
V = п16a3.

Ответ: п16a3.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы